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TURBULENT HEAT TRANSFER IN A FLOW OF LIQUID
METAL NEAR THE WALL

P. 1., Geshev UDC 532,517.4 +536.2.023

The article discusses turbulent heat transfer in media with small Prandt]l numbers (Pr«1
for liquid metals). In this case, the thermal sublayer is Pr~! times thicker than the viscous
sublayer. It is established that the coefficient of turbulent heat transfer varies in the ther-
mal sublayer proportionally to the second power of the distance to the wall; the ratio of the
coefficients of the turbulent transfer of heat and momentum in this region decreases in ac-
cordance with a linear law with approach to the wall, The conclusions of the theory are com-
pared with the experimental data of other authors.

As is well known, the Prandtl numbers for liquid metals are small: Pr =p/xy ~1072,,,1073 v is the
kinematic viscosity; x is the coefficient of thermal diffusivity), and, with x >>». the region of an influence
of the molecular effects of heat transfer ("the thermal sublayer") is far larger than the viscous sublayer,
whose dimensions are determined by the scale y;=V/vy (v =VTy/p is the parameter of the "dynamic
velocity"; Ty, is the friction stress at the wall; p is the density of the liquid). The thickness of the thermal
sublayer with Pr« 1 is determined by the scale y,= x/v* [1]. Outside the thermal sublayer, in the layer
of constant friction stress, considerations of dimensionalities give a value of x(y)=const v,y, where
XxT{) is the coefficient of turbulent thermal diffusivity; y is the distance to the wall. The behavior of the
function x-(y) in the thermal sublayer is determined in accordance with the equation for the pulsations of
the temperature.

1. Let us consider the turbulent flow of an incompressible liquid, flowing above a smooth surface in
the direction of the x axis; we direct the y axis along a normal to the wall; the z axis is perpendicular to
the x and y axes. We denote by U(y) the mean velocity of the flow, and by u, v, w the pulsational compo-
nents of the velocity in the x, y, z directions, respectively. The turbulence is assumed to be statistically
steady-state with respect to the time and homogeneous with respect to the coordinates x and z.

We limit ourselves to a consideration of the region near the wall y&< L (L is the external scale of
the flow), where the turbulence has a universal character [1, 2]. The basic premises of the theory of the
similarity of flow near the wall are formulated in the form of two hypotheses, analogous tothe Kolmogor-
skii similarity hypotheses [1]:

1. In the case of turbulence near the wall with sufficiently large Reynolds numbers Re, the statistical
conditions of turbulence of the pulsations of the velocity in a region located close to a smooth wall are
uniquely determined by two parameters: v, and v.
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2. If Re>1, there exists a broad region L>>y>y,, in which statistical conditions of the pulsations
of the velocity are uniquely determined by the parameter v, and do not depend on v.

By statistical conditions there should be understood the ensemble of all the multidimensional distribu-
tions of the probability or the set of all the multipoint moments of the pulsational velocities. Hypothesis 2
can turn out to be invalid if the observation points are taken too close together, i.e., at distances on the
order of the scale of the smallest eddies ¥/v«. For the hypothesis to be valid, at least one of the condi-
tions must be satisfied

x—x> it — 1> 4 1.1

for any given points x, X' and moments of time t, t' at which are taken the values of the velocities entering
into the hydrodynamic moments.

In the region L>»>y>»y, let us consider the moment (v(x, t)v{x', t)} {the angular brackets denote aver-
aging with respect to the time or with respect to the statistical ensemble). Assuming the satisfaction of
the first condition of (1.1) and the validity of hypothesis 2, we conclude that it depends only on v, y, y',
x'—x, z'—z (the differences arise by virtue of inhomogeneity with respect to x and z). Since from v, and
the coordinates a dimensionless combination cannot be constructed, the overall form of the moment must
be the following:

@ (%, p (0, Y= iR (4 T 2, (1.2)

where R(n, &, {) is some dimensionless function. Analogously, expressions are established for any arbi-
trary moments. In what follows, we require the following:

~ oy 3 v 2'—z —z oy 2 —z 3" — g\,
<ui (xy ) 15 (xlr Dug (X", 1) = v, (Dijk ('y_: v g Ty 'y ): (1.3)
, 3
Ve Oz4j(x,t)\_v* ;,’y’ r—x 2 g
M (%, 8) ——; S = k! u(‘y‘, — T3 ), (1.4)

where uj (X, t) is the vector of the pulsational velocity; qﬁjk’ ‘I'ij are dimensionless functions, In the case
where different moments of time are taken in (1.2)-(1.4), in the dimensionless functions, there arises a
dependence on the complexes [¢'~t}/y]vy, [E"—t)/y]vx.

The law of relative change in the mean velocity has the form [1]

’

AT =U)—Uy) = %—m_yy‘, {1.5)

where ®=0.4 is the Karman constant, and y and y' are taken in the region where hypothesis 2 is valid.

Formulas of the type of (1.2)~(1.4) were discussed by Townsend [2]. The theory of turbulence near
the wall is set forth in 1, 2],

2. The equations for the mean temperature T(y) and the pulsation of the temperature 0(z, t) are ob~
tained from the equation of convective heat transfer under the assumption of a statistical steady state with
respect to the time and of homogeneity with respect to the coordinates x and z,

by &

o~ A @.1)
_vdr 1 (00 98, 96 0 dcody , 0
Ae—x y_l" 2 an:z: +u6.r 1 Uay waz _""dy "i"a'}v (2.2)

where A is a Laplace operator. The boundary conditions to Egs. (2.1), (2.2) can be of two types:

(T)y=o == const, (0)y—q=0; 2.3)
1dr o a0 _ (2.4)
I (R

The temperature pulsations in the thermal sublayer are brought about by the turbulent field of the
velocity, imposed on the linear profile of the mean temperature (dT/dy = const in the thermal sublayer).
It is natural to postulate that, with y<< y,= x/vx, the space-time scales of the temperature pulsations are
determined only by the scales of the turbulent motions and do not depend on the parameter ¥ (here x affects
only the amplitude ). If y>y,=v/v,, then in accordance with the results of Sec. 1, at a distance y from
the wall the scale of the eddies ~y, and the time scale of the motion ~y/v,. Evaluating the derivatives
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0(x, t) by the scales y and y/v«, and the velocity by the parameter v, we conclude that, in a thermal sub-
layer (with y>>y,), the following inequality holds:

( 99 r)O 06 __dwhy 99 LB
U + (?1 +v >y dy +<?t Ly

making it possible to neglect the terms in shaped brackets in (2.2) in comparison with the term A8 (the
evaluations have meaning, of course, not for individual implementations, but only for mean-square values
of the quantities).

For a convincing demonstration of the possibility of neglecting the above-mentioned terms in (2.2),
we let x and dT/dy approach infinity in such a way that their ratio will remain finite ¢his condition is
fulfilled, since dT/dy can vary independently of x). After this, in the right-hand part of (2.2) there re-
mains only w/x)dT/ dy), and the remaining terms drop out, since they contain the factor ¥~ By virtue
of the linearity of Eq. (2.2) with respect to 6, dT /dy determines the absolute value of 8, but has no effect
on the relationship between the terms of this equation itself,

Thus, it is certain that, with very large, but finite, values of x (x> ¥), the temperature pulsations in
the thermal sublayer can be described in the first approximation by the Poisson equation (analogous to the
approach used in [3] with determination of the spectrum of thé temperature pulsations in the case of iso-
tropic turbulence with Pr<« 1). The solution of the approximate Eq. (2.2) has the form

8, (x,1) = — —-—H PG (x, X )o (', ) 2, @.5)

where G(x, x') is a Green function of the Poisson equation for the region y = 0;
1 1
G (x,x [ ] (2.6)
(x,x) = Vi — 9+ — 2+ =27 V(y TR e e
In (2.6), the minus sign relates to the condition (2.3), and the plus sign to the condition (2.4). Multiplying
(2.6) by v(x, t) and averaging, we obtain an expression for the turbulent heat flux:

@y = — —j— 5 j‘ SI a6 (x, XY <v (x, Hv(x, 1)) %;—' 2.7)

¥ >0

It is postulated, in accordance with (1.2), that the correlation function decreases rapidly with [x'~x[ > y,
so that the region of integration making the principal contribution to the integral (2.7) has the dimension
~y. Therefore, the gradient dT/dy can be taken out from under the integral sign, since dT/dy = const
with y<y,.

We go over in (2.7) to the new variables
E=If pofE (2.8)

on which depend the moments (v(x, t)v(x', t)), in accordance with formula (1.2), Here y is dropped out of
the expression for d3x and y~! out of the Green's function (2.6), and it assumes the form

G (x, ! T LI ]
&8 = [i<1—11)2—g2+c2 T Yasvrero

Dividing expression (2.7) by dT/dy and changing sign, in accordance with the definition of the coef-
ficient of turbulent thermal diffusivity, we obtain

() = fdndgdca ME ) RME L) = Cuvts 2.9)

where y. =v4y/Xx; C is a universal constant, characterizing the integral; its calculation is impossible,
since the function R, £, &) from (1.2) is unknown. The Green's function and R, ¢, ¢{) have positive max-
ima with 7=1, £ =¢=0. Since, with large values of 1, £, ¢, these functions fall rapidly, it can be assumed
that x()(y) > 0. Formula (2.9) gives the first term of an expansion in small values of y_.

The terms discarded in the first approximation can be taken into consideration in accordance with
the theory of perturbations, Substituting into them the value of 6;(x, t) from (2.5), we find 6,(x, t}, i.e., a
solution in the second approximation., After multiplication by v (x, t) and averaging, we obtain

”
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where the primes with the functions denote dependence on the coordinates x' or x"; j indicates summation,
u'y= u'v', w9, x's=(&', ¥, 2", In (2.10), the system of coordinates x' is assumed to be moving at the ve-
locity of the liquid at a distance y from the wall. In accordance with (1.5) AU= (v+/)In (y'/y) is the mean
velocity of the flow in this system of coordinates. In accordance with the Galileo principle of relativity, a
transition to a moving system of reckoning cannot change the value of the flows of heat and momentum in
the direction of the y axis.

We go over in (2.10) to the variables (2.8) and to an analogous set of three variables with x", Under
these circumstances, d°x' and d’x" give y® and two green's functions —y~?, while the terms in square brack-
ets, in accordance with (1.2)-(1.5), give the factor v®,/y. In accordance with the definition of the quantity
X7 ), from (2,10) we obtain the correction to (2.9); xT(Z) (v) =const xy3, which confirms once again the
validity of the evaluations made [since XT(Z)« XT D with y_<< 1],

It remains to establish the value of X (y) in the depths of the viscous sublayer with y<y,. Here,
in accordance with hypothesis 1, all the quantities in(2.7) are rendered dimensionless with the use of v,
and v, As a result of the equation of continuity, v(x, t) with y,=vsy/v< 1 varies according to the law
v ~v«y4 [1]. Taking into account that G(x, x') behaves in a different manner, we obtain from (2.7} x1&) ~
vPryi for conditions (2.3), and x @)~ VPry?+ for conditions (2.4).

QOutside of the viscous sublayer, the formula v =uv.y holds for the turbulent viscosity. Dividing
the value of x from (2.9) by v, we obtain the relationship y= PrT"1= (C/n)y. (Prp is the turbulent Prandtl
number). In accordance with the existing experimental data, v decreases with an approach to the wall, In
Fig. 1 the points illustrate the data of different authors, collected in [4]. Unfortunately, data are lacking
for the region y.<< 1, where the proposed theory is formally valid.

For the value of -, the following interpolation formula is proposed:

xr_ 4B _ (2.11)
PR + " (4, B — const),
giving a correct dependence with large and small values of y_ [in (2.11) the change in the behavior of xp
in the viscous sublayer is neglected]. We substitute yp from (2.11) into Eq. (2.1) and integrate it taking
account of the boundary condition x (dT/dy), _o=qw/. pey, @y, is the density of the flow at the wall; cp is the
specific heat capacity of the liquid with constant pressure). Setting A=2.2, B=6.5, we obtain the profile
of the mean temperature:
Oegbe o - N y_ \ (2.12
Erty — 2541 (1 + 0.338y_ + 04542 ) + 178 arctg ( sz) 2.12)
in good agreement with the experimental data of [5]. In Fig. 2, the vertical segments illustrate the scatter
of these data; the curve is drawn in accordance with formula (2.12).

Using {2.11), for the ratio v we obtain the expression

V. y_.
V= R(Ay_+B) T 088y_+36 "

in accordance with which the curve in Fig, 1 was drawn. In [4], an analogous expression was obtained on
the basis of averaged equations and the hypothesis of closure.
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Thus, in the case Pr< 1, the value of Prq, in the greater part of the thermal sublayer, varies pro-
portionally to the distance to the wall. In this case there is no analogy between the turbulent transfers of
heat and momentum.

The author is grateful to S, S. Kutateladze and V. E. Nakoryakov for evaluating the results of the work.
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WAVE FORMATION WITH THE COMBUSTION OF CONDENSED
SUBSTANCES IN A TURBULENT FLOW

V. D. Barsukov, V. N. Vilyunov, UDC 536.46 : 662.311.1
A. D. Kolmakov, and V., P. Nelaev

The surface of samples of powder burning in a flow in the presence of erosion is spotted
with roughnesses of almost-periodic structure [1]. Such roughnesses are also observed
with the combustion of some ablating materials in a flow [2]. It has been observed that,
with the unstable (resonance) combustion of powders, different acoustical modes corre~
spond to the structure of the roughnesses [3]. One of the possible mechanisms of the for-
mation of waves on the surface, developed in [4, 5], has still not received sufficient ex-
perimental confirmation, The present article discusses the laws governing the formation
of a wave structure on the surface of various condensed substances, burning in a turbulent
flow of the combustion products of ballistic powder N.

The experiments were made in a unit, analogous to that described in [6], and consisting of a gas gen-
erator with an erosion nozzle, a device for letting down the pressure, and a counterpressure block. A
charge of ballistic powder N was put into the combustion chamber. The erosion nozzle ensured the possi-
bility of blowing the sample under investigation with powder gases. The velocity of the gas flow and the
level of the pressure were regulated by a change in the parameters of the gas generator. Extinction was
effected by letting down the pressure with the sudden opening of an opening on the side of the combustion
chamber. The starting parameters (the combustion surface, the critical cross section, etc.) were so se-
lected as to exclude the appearance of instability or resonance combustion. Thus, in all the experiments,
the combustion took place under steady~state conditions.

The investigations were made on samples made of Capron, vinyl plastic, ebonite, Plexiglas, fluorine
plastic, polyethylene, textolite, and graphite, with a constant pressure of 75.10° N/m? and velocities of the
blowing of 10~600 m/sec. The samples were cylindrical, with a diameter of 1.7* 102 m and a length of

0.1 m.
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