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TURBULENT HEAT TRANSFER IN A FLOW OF LIQUID 

METAL NEAR THE WALL 

P .  I .  G e s h e v  UDC 532.517.4 +536.2.023 

The a r t i c l e  d i scusses  turbulent  heat t r a n s f e r  in media  with smal l  Prandt l  numbers  (Pr<< 1 
fo r  liquid meta l s ) .  In this case ,  the t h e r m a l  sub laye r  is P r  -1 t imes  th icker  than the viscous 
sub layer .  It is es tabl i shed that  the coefficient  of turbulent  heat t r a n s f e r  va r i e s  in the t h e r -  
mal  sub layer  propor t iona l ly  to the second power  of the dis tance to the wall; the ra t io  of the 
coeff ic ients  of the turbulent  t r a n s f e r  of heat  and momen tum in this region d e c r e a s e s  in ac -  
cordance  with a l i nea r  law with approach to the wall.  The conclusions of the theory  a r e  com-  
pa red  with the exper imenta l  data of o ther  au thors .  

As is well  known, the PrandtI  number s  fo r  liquid me ta l s  a r e  smal l :  P r  = v / X  ,'., 1 0 - z . . .  10 -3 {v is the 
k inemat ic  viscosi ty;  • is the coeff icient  of t h e r m a l  diffusivity),  and, with X >>v. the region of an influence 
of the m o l e c u l a r  effects  of heat t r a n s f e r  ("the t he rma l  s u b l a y e ~  fa r  l a r g e r  than the viscous  sublayer ,  
whose dimensions  a r e  de te rmined  by the sca le  yl = v / v .  (v.  = 4 r  w / p  is the p a r a m e t e r  of the "dynamic 
velocity";  r w is the f r ic t ion  s t r e s s  at the wall; p is the densi ty of the liquid). The th ickness  of the t he rma l  
sublayer  witb Pr<< 1 is de te rmined  by the sca le  Y2 = ~ / v .  [1]. Outside the t h e r m a l  sublayer ,  in the l a y e r  
of constant  f r ic t ion s t r e s s ,  cons idera t ions  of d imensional i t ies  give a value of XT(y)= const v . y ,  where  
XT(y) is the coeff icient  of turbulent  t h e r m a l  diffusivity; y is the d is tance  to the wall .  The behavior  of the 
function XT(y) in the t h e r m a l  sub layer  is de te rmined  in accordance  with the equation fo r  the pulsat ions of 
the t e m p e r a t u r e .  

1. Let  us cons ider  the turbulent  flow of an incompress ib l e  liquid, flowing above a smooth  sur face  in 
the d i rec t ion  of the x axis;  we d i rec t  the y axis  along a no rma l  to the wall; the z axis is pe rpend icu la r  to 
the x and y axes .  We denote by U(y) the mean  veloci ty  of the flow, and by u, v, w the pulsat ional  compo-  
nents of the velocity in the x, y, z d i rec t ions ,  r e spec t ive ly .  The turbulence  is a s sumed  to be s ta t i s t ica l ly  
s t eady- s t a t e  with r e spec t  to the t i m e  and homogeneous with r e s p e c t  to the coordinates  x and z. 

We l imi t  ou r se lves  to a cons idera t ion  of the region nea r  the wall y<< L (L is the ex te rna l  sca le  of 
the flow), where  the  turbulence has a un iversa l  c h a r a c t e r  [1, 2]. The bas ic  p r e m i s e s  of the theory  of the 
s i m i l a r i t y  of flow n e a r  the wall  a r e  fo rmula ted  in the f o r m  of two hypotheses,  analogous to the  Kolmogor -  
skii s im i l a r i t y  hypotheses  [1] : 

1. In the case  of turbulence  n e a r  the wall with sufficiently l a rge  Reynolds numbers  Re, the s ta t i s t ica l  
conditions of turbulence  of the pulsat ions  of the veloci ty  in a region located c lose  to a smooth wall  a r e  
uniquely de te rmined  by two p a r a m e t e r s :  v .  and v.  
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2. If Re>>l, there  exists a broad region L>>y>>y 1, in which stat ist ical  conditions of the pulsations 
of the velocity a re  uniquely determined by the p a r a m e t e r  v ,  and do not depend on ~. 

By stat is t ical  conditions there  should be understood the ensemble of all the multidimensional distr ibu- 
tions of the probabil i ty or  the set of all the multipoint moments  of the pulsational velocit ies.  Hypothesis 2 
can turn out to be invalid if the observat ion points are  taken too close together,  i.e., at distances on the 
o rde r  of the scale  of the smal les t  eddies v / v , .  For  the hypothesis to be valid, at least  one of the condi- 
tions must  be satisfied 

Ix--x~t>>-~,, i t-- t ' l > > ~  (1.1) 

for  any given points x, x' and moments  of t ime t, t '  at which are  taken the values of the velocities entering 
into the hydrodynamic moments .  

In the region L>>y>>y~ let us consider  the moment (v(x, t)v(x', t)} (the angular brackets  denote ave r -  
aging with respec t  to the t ime or with respect  to the stat is t ical  ensemble). Assuming the satisfaction of 
the f i rs t  condition of (1.1) and the validity of hypothesis 2, we conclude that it depends only on v , ,  y, y ' ,  
x ' - x ,  z ' - z  (the differences a r i se  by vir tue of inhomogeneity with respec t  to x and z). Since f rom v ,  and 
the coordinates a dimensionless combination cannot be constructed,  the overall  fo rm of the moment must 
be the following: 

where ROb ~, ~) is some dimensionless  function. Analogously, expressions are  established for  any arbi -  
t r a r y  moments .  In what follows, we require  the following: 

~, - -  ' z" - -  z ) ( 1 . 3 )  3 .~ / g' x" x z - -  z y " x'r_~ x 

o~,j(x', t) \ ~3 ( ) 
~li (x, t) ~ / -- -~- ~I~j y' ~" -- x z' -- z (1.4) y '  ~ ' ~ - - '  

where ui(x, t) is the vector  of the pulsational velocity; @ijk, ~I'ij a re  dimensionless functions. In the case 
where different moments  of t ime a re  taken in (1.2)-(1.4), in the dimensionless functions, there  a r i ses  a 
dependence on the complexes [ ( t ' - t ) / y ] v , ,  [ ( t " - t ) / y ] v , .  

The law of relat ive change in the mean velocity has the form [11 

F ,  
A U  = g ( y ' ) - - U  ( g ) =  :2-1n-~-, (1.5) 

where ~ =0.4 is the Karman constant, and y and y '  a re  taken in the region where hypothesis 2 is valid. 

Formulas  of the type of (1.2)-(1.4) w e r e  discussed by Townsend [2]. The theory  of turbulence near  
the wail is set forth in [1, 2]. 

2. The equations for  the mean tempera tu re  T(y) and the pulsation of the t empera tu re  0(x, t) a re  ob- 
tained f rom the equation of convective heat t r ans f e r  under the assumption of a s tat is t ical  steady state with 
respec t  to the t ime and of homogeneity with respec t  to the coordinates x and z, 

d (vO) d~T 
du " = 7~ dy2 ; (2.1) 

= v__ dT t ( O0 aO , a@ a@ d <vO> . ao t 
A0 ~ ~-~y+-~- .U~-+u~-z~v-s  w oz dy t - g [  , (2,2) 

) 

where A is a Laplace operator .  The boundary conditions to Eqs. '(2.1), (2.2) can be of two types:  

(T)~=0 = const, (0)y=0 = 0; (2.3) 

t i t  \ oO (2.4) 
~f)~=0 = c~ (57)~=0 =0"  

The tempera tu re  pulsations in the thermal  sublayer  are  brought about by the turbulent field of the 
velocity, imposed on the l inear  profi le  of the mean tempera ture  (dT/dy ~ const in the thermal  sublayer).  
It is natural to postulate that, with y<< Y2 = ~ / v . ,  the space- t ime scales  of the t empera tu re  pulsations are  
determined only by the scales  of the turbulent motions and do not depend on the p a r a m e t e r  ~ (here X affects 
only the amplitude 0). If y > > y l = v / v . ,  then in accordance with the resul ts  of See. 1, at a distance y f rom 
the wall the scale of the eddies ~y ,  and the t ime scale of the motion ~ y / v , .  Evaluating the derivatives 
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0(x, t) by the sca les  y and y / v . ,  and the veloci ty  by the p a r a m e t e r  v . ,  we conclude that,  in a t he rma l  sub- 
l aye r  (with Y>>Y2), the following inequality holds: 

I fuaO ao , oo ao d <~o> ~ f )  ~ L.,__o < ~ . . .  ~0 ,  
~'L T+u'~tv~7+w~-- dy -{- XY Y" 

making it poss ib le  to neglect  the t e r m s  in shaped b r acke t s  in (2.2) in compar i son  with the t e r m  A0 (the 
evaluations have meaning,  of course ,  not for  individual implementa t ions ,  but only for  m e a n - s q u a r e  values  
of the quanti t ies) .  

For  a convincing demons t ra t ion  of the poss ib i l i ty  of neglecting the above-ment ioned  t e r m s  in (2.2), 
we let  X and dT /dy  approach infinity in such a way that the i r  ratio: will r e m a i n  finite {this condition is 
fulfilled, s ince dT/dy  can va ry  independently of X). Af te r  this ,  in the r ight-hand pa r t  of (2.2) t he re  r e -  
mains  only (v/)/)(dT/dy),  and the remain ing  t e r m s  drop out, s ince they contain the f ac to r  ~ - 1  By vir tue  
of the l inear i ty  of Eq. (2.2) with r e s pec t  to 0, d T / d y  de t e rmines  the absolute value of 0, but has no effect  
on the re la t ionship between the t e r m s  of this equation i tse l f .  

Thus, it is ce r t a in  that, with ve ry  la rge ,  but finite, values  of X ()/>> u), the t e m p e r a t u r e  pulsat ions in 
the t he rma l  sub layer  can be descr ibed  in the f i r s t  approximat ion  by the Poisson  equation (analogous to the 
approach  used in [3] with de te rmina t ion  of the s p e c t r u m  of thd t e m p e r a t u r e  pulsat ions  in the case  of i so -  
t ropic  turbulence  with Pr<< 1). The solution of the approx imate  Eq. (2.2) has the f o r m  

. .. "' dy' ' (2.5) 
y'~0 

where G(x, x') is a Green function of the Poisson equation for the region y_> 0; 

[ ' , ] i V ( y ' - y f + ( x ' - z ) 2 + ( z ' - z )  ~ ~ g ( Y ' T Y ) ' 2 + ( z ' - & + ( z ' - z )  2. (2.6) C (x, x') = ~-T 

In (2.6), the minus sign r e l a t e s  to the condition (2.3), and the plus sign to the  condition (2.4). Multiplying 
(2.6) by v(x, t) and averaging,  we obtain an expres s ion  fo r  the turbulent  heat flux: 

<v01 ) --_ i S S I d'x'G(x,x')'<v(x,t)v:(x', t)) -~-.dr (2.7) 
y ' ~ 0  

It is postulated,  in accordance  with (1.2), that the co r r e l a t i on  function d e c r e a s e s  rapidly with I x ' - x l  > y, 
so that  the region of in tegra t ion  making the pr inc ipa l  contr ibution to the in tegral  (2.7) has the dimension 
~ y .  There fo re ,  the gradient  dT/dy  can be taken out f r o m  under  the in tegral  sign, s ince dT/dy  ~ const  

with y<< Y2. 

We go over  in (2.7) to the new va r i ab le s  
- - .  Z '  - -  g ,l = ~t' [ : = x ' - - x  4= (2.8) y ' y ' ~ )  

on which depend the momen t s  (v(x, t)v(x ' ,  t)), in accordance  with fo rmula  (1.2). Here  ya is dropped out of 
the expres s ion  for  d3x #, and y-1 out of the Green ' s  function (2.6), and it a s s u m e s  the f o r m  

G(n,~,~) = ~ -  1 / ( ~ _ , ~ ) , + ~ + ~  T ) / ( i + , ) ) ~ + ~ +  ~ " 

Dividing expres s ion  (2.7) by dT /dy  and changing sign, in accordance  with the definition of the coef-  
f icient  of turbulent  t h e r m a l  diffusivity,  we obtain 

where  y_ = v . y / x ;  C is a un iversa l  constant,  cha rac t e r i z ing  the integral ;  its calculat ion is imposs ib le ,  
s ince the function R0L ~, ~ ) f r o m  (1.2) is unknown. The Green ' s  function and R0?, $, ~ ) have pos i t ive  m a x -  
ima  with ~? = 1, ~ = g = 0. Since, with l a rge  values  of 7), ~, [ ,  t hese  functions fall  rapidly,  it can be a s sumed  
that XT(1)(y) > 0. Formula  (2.9) gives the f i r s t  t e r m  of an expansion in smal l  values of y .  

The t e r m s  d i scarded  in the f i r s t  approximat ion  can be taken into cons idera t ion  in accordance  with 
the theory  of pe r tu rba t ions .  Substituting into them the value of 0i(x, t) f r o m  (2.5), we find 02(x, t), i .e. ,  a 
solution in the second approximat ion .  Af ter  mult ipl icat ion by v(x, t) and averaging,  we obtain 

[ (  o , , . , o ,  
<v02> -- z'-' d~ . . . .  

y ' ~ t )  y " ~ 0  
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where  the p r i m e s  with the functions denote dependence on the coordinates  x '  o r  x"; j indicates  summat ion,  
u ' j  = (u'v ~, w') ,  x ' j  = ix', yT, zT). In (2.10), the s y s t e m  of coordinates  x '  is a s sumed  to be moving at the ve -  
loci ty  of the liquid at a d is tance y f r o m  the wall.  In accordance  with (1.5) &U = ( v , / ~ ) l n  (y ' /y)  is the mean  
veloci ty  of the flow in this  s y s t e m  of coord ina tes .  In accordance  with the Galileo p r inc ip le  of re la t iv i ty ,  a 
t r ans i t ion  to a moving s y s t e m  of reckoning cannot change the value of the flows of heat and momentum in 
the d i rec t ion  of the y axis .  

We go over  in (2.10) to the va r i ab l e s  (2.8) and to an analogous se t  of t h ree  va r i ab les  with x". Under 
these  c i r cums t ances ,  d3x ' and d3x '' g ive y6 and two g r e e n ' s  functions - y-S, while the t e r m s  in square  b r a c k -  
ets ,  in accordance  with (1.2)-(1.5), give the f ac to r  v3 . /y .  In accordance  with the definition of the quantity 
XT (Y), f r o m  (2.10) we obtain the c o r r e c t i o n  to (2.9): XT(2)(y) --const Xy. 3,~ which conf i rms  once again the 
validi ty of the evaluat ions made [since XT (2)<< XT (i) with y < <  1]. 

It r ema in s  to es tabl i sh  the value of XT(Y) in the depths of the viscous  sub laye r  with y<< Yl. Here,  
in accordance  with hypothesis  1, all the quanti t ies  in(2.7) a r e  rendered  d imens ion less  with the use of v .  
and , .  As a resu l t  of the equation of continuity, v(x, t) with y+=v.y/v<< 1 va r i e s  accord ing  to the law 
v ~v.y2+ [1]. Taking into account that  G(x, x ' )  behaves  in a different manner ,  we obtain f r o m  (2.7} XT(Y) 
vPry3+ for  conditions (2.3), and XT(Y) ~ vPrY 2 for  conditions (2.4). 

Outside of the viscous sublayer ,  the fo rmula  v T = x v . y  holds fo r  the turbulent  v i scos i ty ,  Dividing 
the value of X T f r o m  (2.9) by VT, we obtain the relat ionship 7 = P r T  -1= (C/~<)y_ (Pr T is the turbulent  Prandt l  
number) .  In accordance  with the exist ing exper imenta l  data, 7 d e c r e a s e s  with an approach  to the wall.  In 
Fig. 1 the points i l lus t ra te  the data of different  authors ,  col lected in [4]. Unfortunately,  data a r e  lacking 
for  the region y_<< 1, where  the p roposed  theory  is fo rmal ly  valid.  

Fo r  the value of XT, the following interpolat ion fo rmula  is p roposed:  

A B (2.11) 7.T = Y~ JF ~ (A, B - -  const), 

giving a c o r r e c t  dependence with l a rge  and smal l  values  of y_ [in (2.11) the change in the behav io r  of XT 
in the viscous  sub layer  is neglected] .  We subst i tute  )iT f r o m  (2.11) into Eq. (2.1) and in tegra te  it taking 
account  of the boundary condition X (dT/dy). -0 =qw/pCp (qw is the density of the flow at the wall; Cp is the 
specif ic  heat capaci ty  of the liquid with conYstant p r e s s u r e ) .  Setting A = 2.2, B = 6.5, we obtain the prof i le  
of the mean  t e m p e r a t u r e :  

'~ + l , 7 8 a r c t g  0.478 +2.83 qy~ 

in good a g r e e m e n t  with the exper imen ta l  data of [5]. In Fig. 2, the ver t i ca l  segments  i l lus t ra te  the s c a t t e r  
of these  data; the curve  is drawn in accordance  with fo rmula  (2.12). 

Using (2.11), for  the rat io  T we obtain the express ion  
Y-- y _  

7 =  ~r = 0 . 8 8 y _ + 2 . 6  ' 

in accordance  with which the curve  in Fig. 1 was drawn. In [4], an analogous express ion  was obtained on 
the bas t s  of averaged  equations and the hypothesis  of c losure .  
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Thus, in the case Pr<< 1, the value of P r  T, in the g r ea t e r  par t  of the thermal  sublayer,  varies  p ro -  
port ionally to the distance to the wall. In this case there is no analogy between the turbulent t r ans fe r s  of 
heat and momentum. 

The author is grateful to S. S. Kutateladze and V. E. Nakoryakov for evaluating the results  of the work. 
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WAVE FORMATION WITH THE COMBUSTION 

SUBSTANCES IN A TURBULENT FLOW 

V. D. Barsukov, V. N. Vilyunov, 
A. D. Kolmakov, and V. P. Nelaev 

OF CONDENSED 

UDC 536.46 : 662.311.1 

The sur face  of samples  of powder burning in a flow in the presence  of erosion is spotted 
with roughnesses  of a lmos t -per iod ic  s t ruc ture  [1]. Such roughnesses are  also observed 
with the combustion of some ablating mater ia l s  in a flow [2]. It has been observed that, 
with the unstable (resonance) combustion of powders,  different acoustical  modes c o r r e -  
spond to the s t ruc ture  of the roughnesses  [3]. One of the possible mechanisms of the for -  
mation of waves on the surface,  developed in [4, 5], has still not received sufficient ex- 

p e r i m e n t a l  confirmation.  The present  ar t ic le  d iscusses  the laws governing the formation 
of a wave s t ruc ture  on the surface of various condensed substances,  burning in a turbulent 
flow of the combustion products  of ball ist ic powder N, 

The experiments  were made in a unit, analogous to that described in [6], and consist ing of a gas gen- 
e r a to r  with an eros ion nozzle, a device for  letting down the p re s su re ,  and a coun te rpressure  block. A 
charge of ball ist ic powder N was put into the combustion chamber .  The erosion nozzle ensured the poss i -  
bility of blowing the sample under investigation with powder gases .  The velocity of the gas flow and the 
level of the p r e s s u r e  were regulated by a change in the p a r a m e t e r s  of the gas genera tor .  Extinction was 
effected by letting down the p r e s s u r e  with the sudden opening of an opening on the side of the combustion 
chamber .  The start ing pa rame te r s  (the combustion surface,  the cr i t ica l  c ross  section, etc.) were so se-  
lected as to exclude the appearance of instability or  resonance combustion. Thus, in all the experiments,  
the combustion took place under s teady-s ta te  conditions. 

The investigations were made on samples made of Capron, vinyl plastic,  ebonite, Plexiglas, fluorine 
plastic,  polyethylene, textolite, and graphite,  with a constant p r e s s u r e  of 75 �9 l0 s N/m 2 and velocities of the 
blowing of 10-600 m / s e c .  The samples were cylindrical ,  with a d iameter  of 1.7 �9 10 -2 m and a length of 

0 . 1 m .  
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